Some peculiar minimal situations by finite p-groups
نویسندگان
چکیده
منابع مشابه
SOME PECULIAR MINIMAL SITUATIONS BY FINITE p-GROUPS
In this paper we show that a finite p-group which possesses non-normal subgroups and such that any two non-normal subgroups of the same order are conjugate must be isomorphic to Mpn = 〈a, b | a n−1 = b = 1, n ≥ 3, a = a1+p n−2 〉, where in case p = 2 we must have n ≥ 4. This solves Problem Nr. 1261 stated by Y. Berkovich in [1]. In a similar way we solve Problem Nr. 1582 from [1] by showing that...
متن کاملPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملON AUTOMORPHISMS OF SOME FINITE p-GROUPS
We give a sufficient condition on a finite p-group G of nilpotency class 2 so that Autc(G) = Inn(G), where Autc(G) and Inn(G) denote the group of all class preserving automorphisms and inner automorphisms of G respectively. Next we prove that if G and H are two isoclinic finite groups (in the sense of P. Hall), then Autc(G) ∼= Autc(H). Finally we study class preserving automorphisms of groups o...
متن کاملSome remarks on inp-minimal and finite burden groups
We prove that any left-ordered inp-minimal group is abelian and we provide an example of a non-abelian left-ordered group of dp-rank 2. Furthermore, we establish a necessary condition for group to have finite burden involving normalizers of definable sets, reminiscent of other chain conditions for stable groups. 0 Introduction and preliminaries One of the model-theoretic properties that gained ...
متن کاملMinimal p-divisible groups
Introduction. A p-divisible group X can be seen as a tower of building blocks, each of which is isomorphic to the same finite group scheme X[p]. Clearly, if X1 and X2 are isomorphic then X1[p] ∼= X2[p]; however, conversely X1[p] ∼= X2[p] does in general not imply that X1 and X2 are isomorphic. Can we give, over an algebraically closed field in characteristic p, a condition on the p-kernels whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasnik Matematicki
سال: 2008
ISSN: 0017-095X
DOI: 10.3336/gm.43.1.08